Sunday, January 31, 2010
Identification and Functional Analysis of Mutations in the Hypocretin (Orexin) Genes of Narcoleptic Canines
Narcolepsy is a sleep disorder affecting animals and humans. Exon skipping mutations of the Hypocretin/Orexin-receptor-2 (Hcrtr2) gene were identified as the cause of narcolepsy in Dobermans and Labradors. Preprohypocretin (Hcrt) knockout mice have symptoms similar to human and canine narcolepsy. In this study, 11 sporadic cases of canine narcolepsy and two additional multiplex families were investigated for possible Hcrt andHcrtr2 mutations. Sporadic cases have been shown to have more variable disease onset, increased disease severity, and undetectable Hypocretin-1 levels in cerebrospinal fluid. The canine Hcrtlocus was isolated and characterized for this project. Only one novel mutation was identified in these two loci. This alteration results in a single amino acid substitution (E54K) in the N-terminal region of the Hcrtr2 receptor and autosomal recessive transmission in a Dachshund family. Functional analysis of previously-described exon-skipping mutations and of the E54K substitution were also performed using HEK-293 cell lines transfected with wild-type and mutated constructs. Results indicate a truncated Hcrtr2 protein, an absence of proper membrane localization, and undetectable binding and signal transduction for exon-skipping mutated constructs. In contrast, the E54K abnormality was associated with proper membrane localization, loss of ligand binding, and dramatically diminished calcium mobilization on activation of the receptor. These results are consistent with a loss of function for all three mutations. The absence of mutation in sporadic cases also indicates genetic heterogeneity in canine narcolepsy, as reported previously in humans.
Nonradioactive multiplex PCR screening strategy for the simultaneous detection of multiple low-density lipoprotein receptor gene mutations.
We have developed a rapid, nonradioactive screening test enabling the simultaneous analysis of three low-density lipoprotein receptor (LDLR) gene mutations (D154N, D206E, and V408M), which together account for familial hypercholesterolemia (FH) in approximately 90% of the South African Afrikaner population. The assay is designed so that FH patients, negative for these founder-related mutations (found in descendants of European settlers), subsequently can be screened for unknown mutations in the mutation-rich exon 4 of the LDLR gene. Our screening assay consists of two steps: (1) multiplex allele-specific PCR amplification of exons 4 and 9, and (2) simultaneous analysis of single- and double-strand conformational polymorphisms in exon 4 by vertical electrophoresis on low cross-linked polyacrylamide gels. The simplicity, specificity, and versatility of the multiplex assay makes it an ideal system for routine screening of FH mutations in large population samples.
A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis.
Pycnodysostosis (MIM 265800) is a rare, autosomal recessive skeletal dysplasia characterized by short stature, wide cranial sutures, and increased bone density and fragility. Linkage analysis localized the disease gene to human chromosome 1q21, and subsequently the genetic interval was narrowed to between markers D1S2612 and D1S2345. Expressed sequence tagged markers corresponding to cathepsin K, a cysteine protease highly expressed in osteoclasts and thought to be important in bone resorption, were mapped previously in the candidate region. We have identified a cytosine to thymidine transition at nucleotide 862 (GenBank accession no. S79895) of the cathepsin K coding sequence in the DNA of an affected individual from a large, consanguinous Mexican family. This mutation results in an arginine to STOP alteration at amino acid 241, predicting premature termination of cathepsin K mRNA translation. All affected individuals in this family were homozygous for the mutation, suggesting that this alteration may lead to pycnodysostosis. Recognition of the role of cathepsin K in the etiology of pycnodysostosis should provide insights into the pathogenesis and treatment of other disorders of bone remodeling, including osteoporosis.
Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice.
Gene trapping in murine embryonic stem cells is a proven method for the simultaneous identification and mutation of genes in the mouse. Gene trap vectors are designed to detect insertions within genes through the production of a fusion mRNA transcript, making the identification of the endogenous gene possible by 5' rapid amplification of cDNA ends (RACE). Although the amplification of specific cDNAs can be achieved rapidly, cloning and screening of informative-sized cDNAs has proven to be time consuming. To eliminate the need for cloning, we have developed a method for solid-phase sequencing of 5' RACE products. More than 150 independent gene trap cell lines were analyzed, and sequence information was obtained for every line successfully amplified by RACE. With the vector used in this study, 40% of the cell lines were found to contain properly spliced gene trap events. The remaining lines were either spliced inefficiently or contained deletions of the vector. These results highlight the advantage of sequencing gene trap integrations before further characterization. This work now paves the way for large-scale gene trap screens in mice and should greatly accelerate the functional analysis of the mammalian genome.
Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes
Medical resequencing of candidate genes in individual patient samples is becoming increasingly important in the clinic and in clinical research. Medical resequencing requires the amplification and sequencing of many candidate genes in many patient samples. Here we introduce Nested Patch PCR, a novel method for highly multiplexed PCR that is very specific, can sensitively detect SNPs and mutations, and is easy to implement. This is the first method that couples multiplex PCR with sample-specific DNA barcodes and next-generation sequencing to enable highly multiplex mutation discovery in candidate genes for multiple samples in parallel. In our pilot study, we amplified exons from colon cancer and matched normal human genomic DNA. From each sample, we successfully amplified 96% (90 of 94) targeted exons from across the genome, totaling 21.6 kbp of sequence. Ninety percent of all sequencing reads were from targeted exons, demonstrating that Nested Patch PCR is highly specific. We found that the abundance of reads per exon was reproducible across samples. We reliably detected germline SNPs and discovered a colon tumor specific nonsense mutation in APC, a gene causally implicated in colorectal cancer. With Nested Patch PCR, candidate gene mutation discovery across multiple individual patient samples can now utilize the power of second-generation sequencing.
A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.
Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos.
Callipyge mutation affects gene expression in cis: A potential role for chromatin structure
Muscular hypertrophy in callipyge sheep results from a single nucleotide substitution located in the genomic interval between the imprinted Delta, Drosophila, Homolog-like 1 (DLK1) and Maternally Expressed Gene 3 (MEG3). The mechanism linking the mutation to muscle hypertrophy is unclear but involves DLK1 overexpression. The mutation is contained within CLPG1 transcripts produced from this region. Herein we show that CLPG1 is expressed prenatally in the hypertrophy-responsive longissimus dorsi muscle by all four possible genotypes, but postnatal expression is restricted to sheep carrying the mutation. Surprisingly, the mutation results in nonimprinted monoallelic transcription of CLPG1 from only the mutated allele in adult sheep, whereas it is expressed biallelically during prenatal development. We further demonstrate that local CpG methylation is altered by the presence of the mutation in longissimus dorsi of postnatal sheep. For 10 CpG sites flanking the mutation, methylation is similar prenatally across genotypes, but doubles postnatally in normal sheep. This normal postnatal increase in methylation is significantly repressed in sheep carrying one copy of the mutation, and repressed even further in sheep with two mutant alleles. The attenuation in methylation status in the callipyge sheep correlates with the onset of the phenotype, continued CLPG1 transcription, and high-level expression of DLK1. In contrast, normal sheep exhibit hypermethylation of this locus after birth and CLPG1 silencing, which coincides with DLK1 transcriptional repression. These data are consistent with the notion that the callipyge mutation inhibits perinatal nucleation of regional chromatin condensation resulting in continued elevated transcription of prenatal DLK1 levels in adult callipyge sheep. We propose a model incorporating these results that can also account for the enigmatic normal phenotype of homozygous mutant sheep.
A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation
The extensive use of a limited number of elite bulls in cattle breeding can lead to rapid spread of recessively inherited disorders. A recent example is the globally distributed syndrome Complex Vertebral Malformation (CVM), which is characterized by misshapen and fused vertebrae around the cervico-thoracic junction. Here, we show that CVM is caused by a mutation in the Golgi-resident nucleotide-sugar transporter encoded by SLC35A3. Thus, the disease showed complete cosegregation with the mutation in a homozygous state, and proteome patterns indicated abnormal protein glycosylation in tissues of affected animals. In addition, a yeast mutant that is deficient in the transport of UDP-N-acetylglucosamine into its Golgi lumen can be rescued by the wild-type SLC35A3 gene, but not by the mutated gene. These results provide the first demonstration of a genetic disorder associated with a defective SLC35A3 gene, and reveal a new mechanism for malformation of the vertebral column caused by abnormal nucleotide-sugar transport into the Golgi apparatus.
The modifier of Min 2 (Mom2) locus: Embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression
Inactivation of the APC gene is considered the initiating event in human colorectal cancer. Modifier genes that influence the penetrance of mutations in tumor-suppressor genes hold great potential for preventing the development of cancer. The mechanism by which modifier genes alter adenoma incidence can be readily studied in mice that inherit mutations in the Apc gene. We identified a new modifier locus of ApcMin-induced intestinal tumorigenesis called Modifier of Min 2 (Mom2). The polyp-resistant Mom2R phenotype resulted from a spontaneous mutation and linkage analysis localized Mom2 to distal chromosome 18. To obtain recombinant chromosomes for use in refining the Mom2 interval, we generated congenic DBA.B6 ApcMin/+, Mom2R/+ mice. An intercross revealed that Mom2R encodes a recessive embryonic lethal mutation. We devised an exclusion strategy for mapping the Mom2 locus using embryonic lethality as a method of selection. Expression and sequence analyses of candidate genes identified a duplication of four nucleotides within exon 3 of the α subunit of the ATP synthase (Atp5a1) gene. Tumor analyses revealed a novel mechanism of polyp suppression by Mom2R in Min mice. Furthermore, we show that more adenomas progress to carcinomas in Min mice that carry the Mom2R mutation. The absence of loss of heterozygosity (LOH) at the Apc locus, combined with the tendency of adenomas to progress to carcinomas, indicates that the sequence of events leading to tumors in ApcMin/+ Mom2R/+ mice is consistent with the features of human tumor initiation and progression.
Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines
We inferred the rate and properties of new spontaneous mutations in Drosophila melanogaster by carrying out whole-genome shotgun sequencing-by-synthesis of three mutation accumulation (MA) lines that had been maintained by close inbreeding for an average of 262 generations. We tested for the presence of new mutations by generating alignments of each MA line to the D. melanogaster reference genome sequence and then compared these alignments base by base. We determined empirically that at least five reads at a site within each line are required for accurate single nucleotide mutation calling. We mapped a total of 174 single-nucleotide mutations, giving a single nucleotide mutation rate of 3.5 × 10−9 per site per generation. There were no false positives in a random sample of 40 of these mutations checked by Sanger sequencing. Variation in the numbers of mutations among the MA lines was small and nonsignificant. Numbers of transition and transversion mutations were 86 and 88, respectively, implying that transition mutation rate is close to 2× the transversion rate. We observed 1.5× as many G or C → A or T as A or T → G or C mutations, implying that the G or C → A or T mutation rate is close to 2× the A or T → G or C mutation rate. The base composition of the genome is therefore not at an equilibrium determined solely by mutation. The predicted G + C content at mutational equilibrium (33%) is similar to that observed in transposable element remnants. Nearest-neighbor mutational context dependencies are nonsignificant, suggesting that this is a weak phenomenon in Drosophila. We also saw nonsignificant differences in the mutation rate between transcribed and untranscribed regions, implying that any transcription-coupled repair process is weak. Of seven short indel mutations confirmed, six were deletions, consistent with the deletion bias that is thought to exist in Drosophila.
Monday, January 11, 2010
DNA copy number aberrations across multiple array-CGH experiments
Regions of gain and loss of genomic DNA occur in many cancers and can drive the genesis and progression of disease. These copy number aberrations (CNAs) can be detected at high resolution by using microarray-based techniques. However, robust statistical approaches are needed to identify nonrandom gains and losses across multiple experiments/samples. We have developed a method called Significance Testing for Aberrant Copy number (STAC) to address this need. STAC utilizes two complementary statistics in combination with a novel search strategy. The significance of both statistics is assessed, and P-values are assigned to each location on the genome by using a multiple testing corrected permutation approach. We validate our method by using two published cancer data sets. STAC identifies genomic alterations known to be of clinical and biological significance and provides statistical support for 85% of previously reported regions. Moreover, STAC identifies numerous additional regions of significant gain/loss in these data that warrant further investigation. The P-values provided by STAC can be used to prioritize regions for follow-up study in an unbiased fashion. We conclude that STAC is a powerful tool for identifying nonrandom genomic amplifications and deletions across multiple experiments.
Source - http://genome.cshlp.org/content/16/9/1149.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/16/9/1149.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
A Generic System for Fast and Flexible Access to Biological Data
generic data warehousing solution for fast and flexible querying of large biological data sets and integration with third-party data and tools. The system consists of a query-optimized database and interactive, user-friendly interfaces. EnsMart has been applied to Ensembl, where it extends its genomic browser capabilities, facilitating rapid retrieval of customized data sets. A wide variety of complex queries, on various types of annotations, for numerous species are supported. These can be applied to many research problems, ranging from SNP selection for candidate gene screening, through cross-species evolutionary comparisons, to microarray annotation. Users can group and refine biological data according to many criteria, including cross-species analyses, disease links, sequence variations, and expression patterns. Both tabulated list data and biological sequence output can be generated dynamically, in HTML, text, Microsoft Excel, and compressed formats. A wide range of sequence types, such as cDNA, peptides, coding regions, UTRs, and exons, with additional upstream and downstream regions, can be retrieved. The EnsMart database can be accessed via a public Web site, or through a Java application suite. Both implementations and the database are freely available for local installation, and can be extended or adapted to `non-Ensembl' data sets.
Source - http://genome.cshlp.org/content/14/1/160.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/14/1/160.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Customized Annotation of Genome Regions
genetic analysis of regions of human and other genomes. It provides a set of components that may be assembled to construct a self-updating database of DNA sequence, mapping data, and annotations of possible genome features. Once one or more remote sources of data for the target region have been identified, all sequences for that region are downloaded, assimilated, and subjected to a (configurable) set of standard database-searching and genome-analysis packages. The results are stored in compressed form in a relational database, and are updated automatically on a regular schedule so that they are always immediately available in their most up-to-date versions. A Java front-end, executed as a stand alone application or web applet, provides a graphical interface for navigating the database and for viewing the annotations. There are facilities for importing and exporting data in the format of the Distributed Annotation System (DAS), enabling a GANESH database to be used as a component of a DAS configuration. The system has been used to construct databases for about a dozen regions of human chromosomes and for three regions of mouse chromosomes.
Source- http://genome.cshlp.org/content/13/9/2195.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source- http://genome.cshlp.org/content/13/9/2195.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Genome-Wide Duplications at the Origin of Vertebrates Using an Amphioxus Gene Set and Completed Animal Genomes
The 2R hypothesis predicting two genome duplications at the origin of vertebrates is highly controversial. Studies published so far include limited sequence data from organisms close to the hypothesized genome duplications. Through the comparison of a gene catalog from amphioxus, the closest living invertebrate relative of vertebrates, to 3453 single-copy genes orthologous between Caenorhabditis elegans (C), Drosophila melanogaster (D), and Saccharomyces cerevisiae (Y), and to Ciona intestinalis ESTs, mouse, and human genes, we show with a large number of genes that the gene duplication activity is significantly higher after the separation of amphioxus and the vertebrate lineages, which we estimate at 650 million years (Myr). The majority of human orthologs of 195 CDY groups that could be dated by the molecular clock appear to be duplicated between 300 and 680 Myr with a mean at 488 million years ago (Mya). We detected 485 duplicated chromosomal segments in the human genome containing CDY orthologs, 331 of which are found duplicated in the mouse genome and within regions syntenic between human and mouse, indicating that these were generated earlier than the human–mouse split. Model based calculations of the codon substitution rate of the human genes included in these segments agree with the molecular clock duplication time-scale prediction. Our results favor at least one large duplication event at the origin of vertebrates, followed by smaller scale duplication closer to the bird–mammalian split.
Source - http://genome.cshlp.org/content/13/6a/1056.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/13/6a/1056.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Spidey: A Tool for mRNA-to-Genomic Alignments
We have developed a computer program that aligns spliced sequences to genomic sequences, using local alignment algorithms and heuristics to put together a global spliced alignment. Spidey can produce reliable alignments quickly, even when confronted with noise from alternative splicing, polymorphisms, sequencing errors, or evolutionary divergence. We show how Spidey was used to align reference sequences to known genomic sequences and then to the draft human genome, to align mRNAs to gene clusters, and to align mouse mRNAs to human genomic sequence. We compared Spidey to two other spliced alignment programs; Spidey generally performed quite well in a very reasonable amount of time.
Source - http://genome.cshlp.org/content/11/11/1952.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/11/11/1952.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
DIAN: A Novel Algorithm for Genome Ontological Classification
Faced with the determination of many completely sequenced genomes, computational biology is now faced with the challenge of interpreting the significance of these data sets. A multiplicity of data-related problems impedes this goal: Biological annotations associated with raw data are often not normalized, and the data themselves are often poorly interrelated and their interpretation unclear. All of these problems make interpretation of genomic databases increasingly difficult. With the current explosion of sequences now available from the human genome as well as from model organisms, the importance of sorting this vast amount of conceptually unstructured source data into a limited universe of genes, proteins, functions, structures, and pathways has become a bottleneck for the field. To address this problem, we have developed a method of interrelating data sources by applying a novel method of associating biological objects to ontologies. We have developed an intelligent knowledge-based algorithm, DIAN, to support biological knowledge mapping, and, in particular, to facilitate the interpretation of genomic data. In this respect, the method makes it possible to inventory genomes by collapsing multiple types of annotations and normalizing them to various ontologies. By relying on a conceptual view of the genome, researchers can now easily navigate the human genome in a biologically intuitive, scientifically accurate manner.
Source - http://genome.cshlp.org/content/11/10/1766.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/11/10/1766.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Sequencing the Complete Human Genome
A 30-fold redundant human bacterial artificial chromosome (BAC) library with a large average insert size (178 kb) has been constructed to provide the intermediate substrate for the international genome sequencing effort. The DNA was obtained from a single anonymous volunteer, whose identity was protected through a double-blind donor selection protocol. DNA fragments were generated by partial digestion with EcoRI (library segments 1–4: 24-fold) and MboI (segment 5: sixfold) and cloned into the pBACe3.6 and pTARBAC1 vectors, respectively. The quality of the library was assessed by extensive analysis of 169 clones for rearrangements and artifacts. Eighteen BACs (11%) revealed minor insert rearrangements, and none was chimeric. This BAC library, designated as “RPCI-11,” has been used widely as the central resource for insert-end sequencing, clone fingerprinting, high-throughput sequence analysis and as a source of mapped clones for diagnostic and functional studies.
Source - http://genome.cshlp.org/content/11/3/483.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Source - http://genome.cshlp.org/content/11/3/483.abstract?sid=2356927f-fbc1-4677-afd5-a191ead9c2f4
Friday, January 8, 2010
An improved method for the detection of hepatitis C virus RNA in plasma utilizing heminested primers and internal control RNA.
The majority of transfusion-associated, non-A, non-B hepatitis cases are caused by hepatitis C virus (HCV), a positive-stranded RNA virus. Although high titers of HCV in clinical specimens have been reported, in some cases extremely low titers of virus are not uncommon. Therefore, an extremely sensitive and reliable assay is required to determine viremia and replication of HCV accurately. We report here the systematic investigation of factors influencing the detection of HCV RNA by a reverse transcription-polymerase chain reaction (RT-PCR) assay utilizing "drop in-drop out" heminested primers derived from the conserved 5' non-coding region of the viral genome. A genetically engineered 5' noncoding region has been constructed and used as an internal control. Addition of the control RNA to each test not only allowed semiquantitation of positive reactions but also validated the performance of reverse transcription and PCR for every specimen. The optimized heminested PCR (HN-PCR) protocol is capable of amplifying one molecule of cloned HCV DNA or 10 molecules of in vitro-transcribed HCV RNA to levels detectable in ethidium bromide-stained agarose gels. We evaluated the improved method for the detection of HCV RNA on a human plasma sample containing the pedigreed strain H of HCV with a chimpanzee infectious dose of 10(6)/ml. Utilizing the internal control RNA, we calculated 2 x 10(7) virions in 1 ml of the original human plasma. The HN-PCR achieves the sensitivity and specificity of the double-nested PCR (DN-PCR) in a simplified format that avoids the false-positive results associated with DN-PCR.
Source - http://genome.cshlp.org/content/2/3/241.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Source - http://genome.cshlp.org/content/2/3/241.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription
Pre-mRNA processing often occurs in coordination with transcription thereby coupling these two key regulatory events. As such, many proteins involved in mRNA processing associate with the transcriptional machinery and are in proximity to DNA. This proximity allows for the mapping of the genomic associations of RNA binding proteins by chromatin immunoprecipitation (ChIP) as a way of determining their sites of action on the encoded mRNA. Here, we used ChIP combined with high-density microarrays to localize on the human genome three functionally distinct RNA binding proteins: the splicing factor polypyrimidine tract binding protein (PTBP1/hnRNP I), the mRNA export factor THO complex subunit 4 (ALY/THOC4), and the 3′ end cleavage stimulation factor 64 kDa (CSTF2). We observed interactions at promoters, internal exons, and 3′ ends of active genes. PTBP1 had biases toward promoters and often coincided with RNA polymerase II (RNA Pol II). The 3′ processing factor, CSTF2, had biases toward 3′ ends but was also observed at promoters. The mRNA processing and export factor, ALY, mapped to some exons but predominantly localized to introns and did not coincide with RNA Pol II. Because the RNA binding proteins did not consistently coincide with RNA Pol II, the data support a processing mechanism driven by reorganization of transcription complexes as opposed to a scanning mechanism. In sum, we present the mapping in mammalian cells of RNA binding proteins across a portion of the genome that provides insight into the transcriptional assembly of RNA–protein complexes.
Source - http://genome.cshlp.org/content/16/7/912.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Source - http://genome.cshlp.org/content/16/7/912.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase.
The application of PCR to a wide variety of biological problems and molecular techniques has gained wide acceptance. RNA-PCR, a technique in which first-strand cDNA synthesis is followed by PCR amplification, has enabled detection and characterization of rare transcripts. One problem confronting the researcher involves specific amplification of transcribed sequences in the presence of small amounts of genomic DNA of identical sequence. We describe a novel technique, selective RNA amplification, which will specifically amplify RNA sequences in a background of homologous DNA. The method involves first-strand cDNA synthesis from a specific dUMP-containing oligonucleotide that contains unique user-defined 5' sequence (adapter sequence) not found in the message of interest. RNA template is degraded using RNase H, which is specific for RNA/DNA hybrids. This is followed by second-strand synthesis using a gene-specific primer (GSP). The original adapter primer is digested with uracil DNA glycosylase (UDG) to prevent its participation in subsequent amplification. PCR is then performed using the GSP and a second primer corresponding to the unique adapter sequence. In this paper, we apply this method to the amplification of RNA derived from human papilloma virus sequences. Using Southern analysis, we demonstrate specific amplification of 10(5) molecules of an in vitro-transcribed RNA. Denatured DNA of identical sequence and concentration was not amplified using the RNA-specific method. The method could eliminate the need for stringent purification of RNA and enables amplification of rare messages from RNA preparations containing homologous DNA of identical sequence and size.
Source - http://genome.cshlp.org/content/3/1/28.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Source - http://genome.cshlp.org/content/3/1/28.abstract?sid=abda94ee-95ca-4db6-b6c1-719e1e5d9f51
Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase.
The application of PCR to a wide variety of biological problems and molecular techniques has gained wide acceptance. RNA-PCR, a technique in which first-strand cDNA synthesis is followed by PCR amplification, has enabled detection and characterization of rare transcripts. One problem confronting the researcher involves specific amplification of transcribed sequences in the presence of small amounts of genomic DNA of identical sequence. We describe a novel technique, selective RNA amplification, which will specifically amplify RNA sequences in a background of homologous DNA. The method involves first-strand cDNA synthesis from a specific dUMP-containing oligonucleotide that contains unique user-defined 5' sequence (adapter sequence) not found in the message of interest. RNA template is degraded using RNase H, which is specific for RNA/DNA hybrids. This is followed by second-strand synthesis using a gene-specific primer (GSP). The original adapter primer is digested with uracil DNA glycosylase (UDG) to prevent its participation in subsequent amplification. PCR is then performed using the GSP and a second primer corresponding to the unique adapter sequence. In this paper, we apply this method to the amplification of RNA derived from human papilloma virus sequences. Using Southern analysis, we demonstrate specific amplification of 10(5) molecules of an in vitro-transcribed RNA. Denatured DNA of identical sequence and concentration was not amplified using the RNA-specific method. The method could eliminate the need for stringent purification of RNA and enables amplification of rare messages from RNA preparations containing homologous DNA of identical sequence and size.
Source - http://genome.cshlp.org/content/3/1/28.abstract?sid=f73b0300-371a-40f2-9f00-1f8f0ff69132
Source - http://genome.cshlp.org/content/3/1/28.abstract?sid=f73b0300-371a-40f2-9f00-1f8f0ff69132
Subscribe to:
Posts (Atom)